

Программное средство для термодинамического моделирования многокомпонентных многофазных систем. Версия 2.0

TeDy 2.0

Руководство пользователя

УДК 544.344

Пешкичев И.В., Шульц О.В., Паукова А.Е., Пугачев В.Ю., Макеева И.Р.

Программное средство для термодинамического моделирования многокомпонентных многофазных систем. Версия 2.0: TeDy 2.0 Руководство пользователя – Снежинск: РФЯЦ-ВНИИТФ, 2021. — 33 с.: ил.

В документе приведено описание программного средства TeDy, который разрабатывается в ФГУП «РФЯЦ-ВНИИТФ им. академ. Е.И. Забабахина» и предназначен для решения задач термодинамического моделирования многокомпонентных многофазных систем, исследования и оценки поведения физико-химических систем на основе данных о химически равновесных составах. Документ содержит описание интерфейса пользователя, описание модулей работы с базой данных, расчета равновесия, оценки свойств и расчета изменения термодинамических функций по реакциям.

Краткое описание предназначено для студентов, аспирантов и преподавателей направлений химическая технология, химическая наука, металлургия и материаловедение; научных и инженерных работников, специализирующихся в области химических технологий, участвующих в разработке, оптимизации и модернизации технологий; экспертов-аналитиков, оценивающих реализуемость, применимость, эффективность конкретных технических решений.

© Коллектив авторов, 2021

Оглавление

ВВЕДЕНИЕ	5
1 Требования к аппаратным и программным средствам	6
1.1 Пакет поставки	6
1.2 Минимальные и рекомендуемые аппаратные требования	6
1.3 Системные требования	6
2 Установка и запуск программного средства	6
3 Основной интерфейс	7
4 Настройка программного средства	8
4.1 Конфигурация	8
4.2 Информация о подключенных модулях	9
4.3 Настройки пользователя	10
5 Работа с базой данных	11
5.1 Назначение модуля	11
5.2 Поиск с использованием фильтров	12
5.3 Просмотр данных	13
5.4 Экспорт данных	13
5.5 Построение графиков	14
6 Расчёт равновесия	16
6.1 Назначение модуля	16
6.2 Загрузка варианта расчета	16
6.3 Создание нового варианта	16
6.4 Постановка задачи	22
6.5 Экстраполяция данных	24
6.6 Сохранение варианта	25
6.7 Настройка расчетной стратегии и запуск расчета	26
6.8 Результаты расчета	27
7 Оценка свойств	29
7.1 Назначение модуля	29
7.2 Постановка задачи	30
7.3 Результаты расчета	30
8 Расчет реакций	31
8.1 Назначение модуля	31
8.2 Постановка задачи	31

8.3 Результаты расчета	31
Список использованных источников	33

ВВЕДЕНИЕ

Настоящее краткое описание предназначено для пользователя программного средства (ПС) TeDy [1], нацеленного на решение задач термодинамического моделирования многокомпонентных многофазных систем, исследования и оценки поведения физикохимических систем на основе данных о химически равновесных составах.

Программное средство обеспечивает расчет химически равновесного состава в многокомпонентных многофазных системах, расчет изменения термодинамических функций отдельных химических реакций, оценку значений термодинамических функций химических соединений (энтальпии образования, энтропии и изобарной теплоемкости) по их структуре и доступ к базе термодинамических данных. В основе функции расчета равновесия лежит стехиометрический метод расчета суммарной энергии Гиббса системы в зависимости от координат реакций. Координаты минимума рассчитываются одним из методов оптимизации. основе значений численных Ha координат реакций, соответствующих минимуму энергии Гиббса, определяется равновесный вещественный состав. Для оценки свойств различных соединений по данным об их структуре и агрегатном состоянии используется математическая модель на основе принципов QSPR (Quantitative Structure-Property Relationship). База данных программного средства обеспечивает хранение, просмотр и извлечение данных о термодинамических свойствах веществ и других данных, необходимых для расчетов.

Программное средство имеет модульную архитектуру. В текущей версии реализованы следующие модули:

- 1. Работа с базой данных;
- 2. Расчёт равновесия;
- 3. Оценка свойств;
- 4. Расчёт реакций.

ПС TeDy нацелен на применение при проектировании и оптимизации широкого спектра технологических процессов, проведение исследований и оценки поведения различных физико-химических систем. Программное средство успешно применяется при выполнении работ по моделированию ключевых технологических процессов замкнутого ядерного топливного цикла.

1 Требования к аппаратным и программным средствам

1.1 Пакет поставки

На СД-диске с ПС ТеДу находятся:

- исполняемые файлы программного средства;
- файлы тестовых расчётных вариантов;
- дистрибутивы системных компонент OC Windows, требуемых для работы расчётного кода;
- данное краткое описание.

1.2 Минимальные и рекомендуемые аппаратные требования

Для стабильной и комфортной работы пользователя с ПС TeDy компьютер должен соответствовать аппаратным требованиям, представленным в таблице 1.

Таблица 1 – Аппаратные требования

Компонент	Минимальное требование	Рекомендуемое требование
Процессор	Intel Core 2 Duo, 2 GHz	Intel Core i5, 3.3 GHz
Оперативная память	4 гигабайт	8 гигабайт
Жесткий диск	120 гигабайт	500 гигабайт
Диагональ монитора	19 дюймов	24 дюйма
Разрешение монитора	1680x1050	1920x1080

1.3 Системные требования

ПС TeDy может работать под управлением операционных систем Microsoft Windows 7 (рекомендуется), 8 и 10.

Для обеспечения отображения результатов расчёта в формате офисных документов Word и Excel требуется наличие пакета Microsoft Office не ниже 2010 версии¹.

2 Установка и запуск программного средства

Если Microsoft .NET Framework 4.0 не установлен или установлен не полностью — требуется установить дистрибутив «dotNetFx40_Full_x86_x64.exe» из каталога INSTALL с правами администратора.

Для установки ПС TeDy на компьютер необходимо запустить инсталляционный пакет и последовательно выполнить инструкции установщика, включая принятие лицензионного

¹ Установка программных компонент для поддержки баз данных SQLite не требуется, так как провайдеры данных СУБД SQLite интегрированы в состав ПС TeDy.

соглашения. После успешного завершения установки на рабочем столе появится ярлык для запуска кода с именем «*TeDy*».

Запуск программного средства TeDy осуществляется стандартным образом с помощью исполняемого файла *TeDy.exe*. При этом на экран выводится главное окно программного средства.

3 Основной интерфейс

Доступ к основным функциям TeDy возможен через специально разработанный программный интерфейс.

🔀 Химическ	кая термодинамика 2.0		- D >	<
ð.	Конфигурация	Каталог TeDy	E:\TeDy2\TeDy.Application\bin\Debug	3
20	Информация о подключенных модулях	Каталог логирования	.\log	
	Настройки пользователя	Путь к файлу конфигурации	.\system.cfg	
		Путь к файлу базы данных веществ	.\data\db\ThermoProperty.db	
		Каталог вычислительных задач по-умолчанию	.\data\Projects	
~		Каталог с настройками пользователя	.\userSettings	
6				

Главное окно программного средства ТеDy показано на рисунке 1.

Рисунок 1 – Главное окно программного средства TeDy. Вид по умолчанию

В главном окне по умолчанию отображается страница с общими параметрами программы (Настройки). Главное окно содержит панель для переключения между модулями:

– вывод на экран окна «Настройки программного средства» (описание приведено в разделе 4);

- вывод на экран окна «Работа с базой данных» (описание приведено в

разделе 5);

- вывод на экран окна «Расчёт равновесия» (описание приведено в разделе

6);

- вывод на экран окна «Оценка свойств» (описание приведено в разделе 7);

- вывод на экран окна «Расчет реакций» (описание приведено в разделе 8);

Для переключения между модулями необходимо нажать на значок соответствующего модуля на панели слева.

4 Настройка программного средства

На стартовой странице программы пользователь при необходимости осуществляет основные настройки, разделенные на следующие вкладки:

- Конфигурация;
- Информация о подключенных модулях;
- Настройки пользователя.

4.1 Конфигурация

На вкладке «Конфигурация» указаны пути к основным каталогам TeDy, как показано на рисунке 2:

Рисунок 2 – Настройка программного средства. Вкладка «Конфигурация»

- 1. Каталог TeDy каталог, в котором расположен основной исполняемый файл TeDy.exe;
- 2. Каталог логирования каталог, в котором сохраняются .log-файлы с записями о событиях, возникающих при работе программы. Во время работы программного средства TeDy отслеживается возникновение различных событий, таких как загрузка модулей, создание элементов пользовательского интерфейса, загрузка и освобождение памяти, ошибки при задании или загрузке данных и другие. Все отслеживаемые события записываются в log-файлы трёх типов:
 - основной main.log;
 - отслеживание памяти memory.log;
 - ошибки err.log;
- 3. Путь к файлу конфигурации расположение файла с общими настройками программного средства;
- 4. Путь к файлу базы данных веществ расположение файла ThermoProperty.db, содержащего базу данных по термодинамическим свойствам индивидуальных веществ;
- 5. Каталог вычислительных задач по умолчанию каталог, в котором хранятся все данные программных модулей отдельных задач;
- 6. Каталог с настройками пользователя каталог с файлом пользовательских настроек.

4.2 Информация о подключенных модулях

Программное средство имеет модульную архитектуру. Это означает возможность подключения/отключения модулей, решающих различные задачи.

На вкладке «Информация о подключенных модулях» приведён список доступных в данной версии программных модулей TeDy, как показано на рисунке 3.

🛃 Химическа	я термодинамика 2.0		-	Construction of the local division of the lo			
24	Конфигурация	Включен	Модуль	Путь к файлу конфигурации			
	Информация о подключенных модулях		ReactionModule	.\Modules\ReactionModule.cfg			
10.000			DataBaseModule				
	пастроики пользователя	v	EquilibriumModule				
			Estimationwodule	Параметры конфигур	рации модул	R	
		Каталоги в	ычислительных зад	au .\data\Projects\ReactionMo	odule 🚹	Добавить	Удалить
b							
6							ž
						Coxpa	нить настроики

Рисунок 3 – Настройки программного средства. Вкладка «Информация о подключенных модулях»

Для отключения модуля следует снять, а для включения – установить галочку рядом с его названием в столбце таблицы «Включен».

4.3 Настройки пользователя

На вкладке «Настройки пользователя» доступен выбор темы визуального оформления пользовательского интерфейса, как показано на рисунке 4.

🛃 Химическ	кая термодинамика 2.0				-		×
Ö.	Конфигурация	Тема визуального оформления	Office2007Blue 🔻				
20	Информация о подключенных модулях						
	Настройки пользователя						
				Сохранит	ь настр	ойки	
5ª							

Рисунок 4 – Настройки программного средства. Вкладка «Настройки пользователя»

Выбор темы осуществляется из предложенных в раскрывающемся списке. Применение выбранной темы происходит автоматически. Для сохранения настроек необходимо нажать на кнопку «Сохранить настройки».

5 Работа с базой данных

5.1 Назначение модуля

В состав программы включена база данных по термодинамическим свойствам индивидуальных веществ. База включает информацию из источников [2, 3].

Модуль «Работа с базой данных» позволяет искать, просматривать экспортировать данные, а также строить графики. Найти интересующее вещество можно как непосредственно прокручиваю общую таблицу (рисунок 5), так и с помощью фильтров (рисунок 6).

🛃 Химическая	а терм	иоди	инамика 2.0							
	Б	аза	данных Гра	афи	ки					
			Хим формула	∇						
	*		хим. формула		вещество	вещество рус.				
		+	С		Carbon	Углерол				
		+	CBr		Bromomethylidyne	Углерода бромид				
		HNO3			Nitric Acid	Азотная кислота				
		+ C2			Carbon2	Диуглерод				
		+	C3		Carbon3	Триуглерод				
		+	CCN		Carbon Carbide-Nitride	Углерода карбонитрид				
		+	CCI		Chloromethylidyne	Углерода хлорид				
		+	CCI2		Dichloromethylene	Углерода дихлорид				
		+	CCI3		Trichloromethyl	Углерода трихлорид трихлорид				
SA.		+	CCI4		Tetrachloromethane	Углерода тетрахлорид				
		+	Ir2S3		Diiridium Trisulfide	Дииридия трисульфид				
		+	C2CI		Dicarbon Chloride	Диуглерода хлорид				
		+	C2CI2		Dichloroacetylene	Дихлорацетилен				
		+	C2CI3		Dicarbon Trichloride	Диуглерода трихлорид				
		+	C2Cl4		Tetrachloroethene	Тетрахлорэтилен				
		+	C2CI5		Pentachloroethyl	Пентахлорэтил				
		+	C2CI6		Hexachloroethane	Гексахлорэтан				
		+	CH4		Methane	Метан				
		+	CN		Cyanogen	Циан				
		+	CN2		Carbon Nitride (NCN Radical)	Углерода динитрид (NCN радикал)				
		+	C2N2		Ethanedinitrile	Дициан Экспорт				
		+	CNC		Nitrogen Dicarbide	Азота дикарбид В Ехсеі				
	•					•				

Рисунок 5 – Вид окна модуля «Работа с базой данных». Общая таблица

5.2 Поиск с использованием фильтров

Для использования фильтров следует щелкнуть по значку в заголовке нужного столбца (если требуется поиск по формуле – следует щелкнуть по значку в столбце «Хим. Формула», если по англоязычному названию вещества, то в столбце «Вещество», если по русскоязычному – «Вещество рус.»). Далее в выпадающем меню можно выбрать один из вариантов:

- сортировка в алфавитном порядке;
- сортировка в обратном алфавитном порядке;
- сброс фильтров
- текстовый фильтр
- текстовый поиск

При выборе одного из вариантов текстового фильтра на экране отобразится окно, позволяющее задать дополнительное условие для текстового фильтра.

🔀 Химическая	я терм	юди	намика 2.0					_ 🗆 🗙
Ö.	Б	аза	данных Гр	афин	си			
50			Хим. формула	Y	Вещество	Y	Вещество рус.	7
	\ast			A Z↓	Sort A to Z			
		+	С	Z↓	Sort Z to A		лерод	
		+	CBr	_	Clear Filter		лерода бромид	
		+	HNO3		T		отная кислота	
~		+	C2		lext Filters		Equals	
57.		+	C3		Search	٩	Does Not Equal	
		+	CCN		Select All)		Begins With	
		+	CCI		 ✓ (C2H5)4Si ✓ (C4H9O)3PO 		Ends With	
		+	CCI2		 (CaFe)0,5SiO3 		Contains	
		+	CCI3		CaMg)0,5SiO3	лерода трихлорид трихлор	ид	
		+	CCI4		 ✓ (CaO)2*AI2O3*SiO2 ✓ (CaO)3*AI2O3*6H2O 	лерода тетрахлорид		
		+	Ir2S3		 ✓ (CH3)2CCH2 		иридия трисульфид	
		+	C2CI			нуглерода хлорид		
		+	C2Cl2		ОК	Cancel	ихлорацетилен	
		+	C2CI3				"иуглерода трихлорид	
Custom A	utoFil	+	C2Cl4		Tetrachloroethene	-	Тетрахлорэтилен	x
Custom A	atorii	ter						
Show rows	where	:						
begins	with		▼ CO					-
	And (Or						
			•					-
							UK	Cancel

Рисунок 6 – Вид окна с выпадающим меню текстовых фильтров для поиска

5.3 Просмотр данных

Чтобы раскрыть таблицу с данными, следует нажать на значок «+» слева от формулы интересующего вещества. После этого раскроется таблица, содержащая все данные из всех доступных источников, как показано на рисунке 7.

🛃 Химическая	а тер	моди	инамика 2.0								- 0 -	x		
		База	данных	Графи	ки									
10	_		Хим. форм	иула 🕎	Вещество		7	7 Вещест	гво рус.					
	\ast			, .					12					
		+	со		Carbon Mo	onoxide		Углеро	/глерода монооксид					
		Ξ	CO2		Carbon Die	oxide		Углеро	да диоксид	, углекисль	ій газ			
			Фазово	т	Cn	s	(G-H298)/T	н	H-H298	6	ΛHf			
			GAS	208 1/100	9 37132	213 77	213.77	-303 505	0	-457.24	-393 505			
			GAS	300	37 217	213.77	213.77	-393.436	0.069	-457.636	-393.505			
			GAS	400	41.326	225,291	215.282	-389.501	4.004	-479.618	-393.58	≣		
			GAS	500	44.625	234.88	218.266	-385.198	8.307	-502.638	-393.666			
	GAS GAS			600	47.323	243.262	221.748	-380.596	12.909	-526.554	-393.805			
			GAS	700	49.563	250.731	225.364	-375.749	17.756	-551.26	-393.99			
			GAS	800	51.434	257.475	228.963	-370.696	22.809	-576.676	-394.198			
			GAS	900	52.999	263.626	232.478	-365.472	28.033	-602.735	-394.412			
			GAS	1000	54.308	269.28	235.879	-360.105	33.4	-629.384	-394.626			
\sim			GAS	1100	55.412	274.509	239.156	-354.617	38.888	-656.577	-394.837			
			GAS	1200	56.342	279.371	242.307	-349.028	44.477	-684.274	-395.042			
			GAS	1300	57.13	283.913	245.335	-343.354	50.151	-712.441	-395.242			
			GAS	1400	57.803	288.172	248.244	-337.606	55.899	-741.047	-395.437			
			GAS	1500	58.381	292.18	251.041	-331.796	61.709	-770.067	-395.628			
			GAS	1600	58.883	295.965	253.732	-325.932	67.573	-799.476	-395.815			
			GAS	1700	59.321	299.548	256.322	-320.022	73.483	-829.253	-396			
			GAS	1800	59.705	302.95	258.819	-314.07	79.435	-859.379	-396.185			
			GAS	1900	60.046	306.187	261.228	-308.082	85.423	-889.837	-306 371 Экспорт			
			GAS	2000	60.349	309.275	263.553	-302.062	91.443	-920.612	в Excel			
											•			

Рисунок 7 – Таблица с данными по свойствам индивидуального вещества

5.4 Экспорт данных

Для экспорта табличных данных в Microsoft Excel следует выбрать в списке веществ строки, содержащие интересующие вещества и затем в нижнем правом углу окна нажать кнопку «Экспорт в Excel». Чтобы снять всё выделение, следует нажать клавишу *Esc*.

5.5 Построение графиков

Для построения графиков в модуле «Работа с базой данных» следует в верхней части окна выбрать вкладку «графики» и далее в появившемся окне слева нажать на вкладку «Работа с графиками». После этого слева выдвинется панель, которую можно закрепить на экране с помощью кнопки . Далее в выпадающем списке следует отметить вещества, для которых нужно построить графики. В качестве примера на рисунке 8 показан выбор двух веществ (СО и СО₂).

Рисунок 8 – Вид окна построения графиков с выпадающим списком

Далее можно выбрать аргументы по осям абсцисс и ординат. Чтобы построить график следует нажать кнопку «Построить». На рисунке 9 приведен пример построения графика зависимости энтальпии СО и СО₂ от температуры.

Рисунок 9 – Вид окна с построенным графиком

Чтобы сохранить график следует нажать кнопку «Сохранить график». В открывшемся окне необходимо выбрать папку для сохранения файла, назначить имя файла (по умолчанию «Graphs») и выбрать тип файла (BMP, PNG или SVG), после чего нажать кнопку «Сохранить».

6 Расчёт равновесия

6.1 Назначение модуля

Функция «Расчёт равновесия» позволяет рассчитывать химически равновесные составы в многокомпонентных многофазных системах. С типами и примерами решаемых задач можно ознакомиться по публикациям [1, 4]. При постановке задачи пользователь задаёт набор рассматриваемых веществ и граничные условия для расчёта: исходное соотношение веществ или элементный состав, температуру или диапазон температур, давление или диапазон давлений. Исходные данные для расчёта берутся из базы данных. Программа рассчитывает химически равновесный состав и далее выводит результаты расчёта в виде графиков и таблиц. Результаты расчёта также можно экспортировать в виде таблицы в Microsoft Excel.

6.2 Загрузка варианта расчета

В стартовом окне программного средства TeDy необходимо выбрать вкладку с интересующей задачей. Любой расчет начинается с выбора уже сохраненного варианта или создания нового, как показано на рисунке. Чтобы загрузить сохраненный вариант необходимо выбрать нужный из списка и нажать на кнопку «Загрузить» (рисунок 10).

🛃 Химическая	термодинамика 2.0	A 100 10 10 10		
Ö.	Задача: Расчет равновесия Ра	асчетный вариант:		
20	Исходные данные Результ	аты расчетов		
	Вариант Описание		Дата изменения	Дата создания
	ZnO+H2S тестовый вариант	:	18/12/2019 09:35:31	18/12/2019 09:35:31
	Загрузить	Создать новый	i	Удалить

Рисунок 10 – Вид стартового окна модуля «Расчет равновесия»

6.3 Создание нового варианта

Чтобы создать новый вариант следует нажать кнопку «Создать новый». Создание нового расчётного варианта начинается с выбора химических элементов (рисунок 11).

🛃 Химическа	я терм	юдина	мика 2.0	-											-					0 X
10	Зада	ача: А	Расчет р	авновеси	я Расче	гный вари	ант: ***	новый ва	риант **	* Расч	ет									
20		Ісході	ные данн	ње Рез	зультаты і	расчетов														
	5		Bh	бор эле	ментов		Φor	мирова	ние спис	ка веше	ств	Колицес	твенный	й и фазов	вый сост	an H	астройк	и расцет	ной стра	тегии
	писо	Форма таблицы Менлелеева: Литературные источники:														non cipe				
	к вар	Форма таблицы Менделеева: Литературные источники: Длиннопериодная • 6 - Ihsan Barin "Thermochemical Data of Pure Substances" •																		
	иант						дли	ноперио	дная •	0-1	insan barir	Thermoo	nemical L	Jata of Pur	e Substan	ces •				VIIIA
	B	H 1 Selements														2				
	Coxp	1	H	ΠΔ		P_elemer	its								ША	TV/A	VA	٨		Гелий
	анить		3	4		E_elemen	nts its								5	6	7	8	9	10
		2	Li	бериллий											B 6op	С углерод	N 8307	КИСЛОРОД	F фтор	несн
6			11	12											13	14	15	16	17	18
		m	Na натрий	магний		IV₿	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB	ΠВ	алюминий	кремний	φοςφορ	S cepa	хлор	Ar аргон
			19	20	21	22	23	24	25	26	27	28	29	30	31	12	33	34	35	36
		4	калий	кальций	скандий	титан	ванадий	хром	марганец	железо	кобальт	никель	медь	цинк	галий	германий	мышьяк	селен	бром	криптон
			37 Rh	38 Sr	39 V	40 7r	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Del	47	48 Cd	49 In	50 Sn	51 Sh	52 To	53	54 Xo
		5	рубидий	стронций	иттрий	цирконий	ниобий	молибден	технеций	рутений	родий	палладий	cepeópo	кадмий	индий	олово	сурьма	теллур	йод	ксенон
			Cs SS	se Ba	57 La	72 Hf	73 Ta	W 74	75 Re	76 Os	Ir	78 Pt	79 Au	80 Ha	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
		Ľ,	цезий	барий	лантан	гафний	тантал	вольфрам	рений	осмий	иридий	платина	золото	ртуть	талий	свинец	висмут	полоний	астат	радон
		-	87 Fr	ss Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
			франций	радий	актиний	резерфордий	нильсборий	сиборгий	борий	хассий	мейтнерий	дармштадий	ренттений	коперниций	унунтрий	унунквадий	унунпентий	унунгексий	унунсептий	унуноктий
					L	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
						церий	празеодим	неодим	прометий	самарий	европий	гадолиний	тербий	диспрозий	гольмий	эрбий	тулий	иттербий	лютеций	
					А	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
						торий	протактиний	уран	нептуний	плутоний	америций	кюрий	берклий	калифорний	зйнштейний	фермий	менделеевий	нобелий	лоуренсий	
										Н	азад	Далее								

Рисунок 11 – Вид страницы выбора химических элементов

Необходимо выделить в таблице химические элементы, входящие в элементный состав рассматриваемой системы и нажать кнопку «Далее» (рисунок 12).

🔀 Химическа	я терм	одина	амика 2.0	i mang											-								
Ö.	Зада	ача: Г	Расчет р	авновеси	я Расче	гный вари	ант: *** и	новый ва	риант **	* Расч	ет												
20	И	Ісході	ные данн	ные Рез	вультаты	асчетов																	
	Спи	Выбор элементов Формирование списка веществ Количественный и фа														овый состав Настройки расчетной стратегии							
	COK B2	Форма таблицы Менделеева: Литературны													итературные источники:								
	вриан	Длиннопериодная • 6 - Ihsan Barin "Thermochemical Data of Pure Substances" •														ces" 🔻							
	TOB															VIIIA 2							
	Coxpa	H P. elements He sources He results														Не гелий							
	нить		3 11	4 Re		F_elemer	its								8 ⁵	ເໍ	7 N	0	F	10 Ne			
1		2	литий	бериллий											бор	углерод	азот	кислород	фтор	неон			
Q		m	Na	Mg ¹²											AI 13	¹⁴ Si	P ¹⁵	5 ¹⁶	17 Cl	Ar			
			натрий 19	магний 20	111B 21	IVB 22	VB 23	VIB 24	VIIB 25	VIIIB 26	VIIIB 27	VIIIB 28	1B 29	11B 30	алюминий 31	кремний 32	фосфор 33	cepa 34	хлор 35	аргон 36			
		4	К калий	Са кальций	Sc скандий	Ті титан	V ванадий	Сг	Mn марганец	железо	кобальт	никель	Си медь	Zn	Ga галий	Ge германий	Аз	Se селен	Вг бром	криптон			
			37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	Pd 46	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	s4 Xe			
		Ś	рубидий	стронций	иттрий	цирконий	ниобий	молибден	технеций	рутений	родий	палладий	серебро	кадмий	индий	олово	сурьма	теллур	йод	ксенон			
		9	55 Сs цезий	56 Ва барий	57 La лантан	72 Нf гафний	73 Та тантал	74 W вольфрам	75 Re рений	76 Оз осмий	77 Ir иридий	78 Рт	79 Au 30.0000	80 Нд ртуть	81 ТІ талий	82 Рb свинец	ва Ві висмут	ва Ро полоний	At acrar	86 Rn радон			
		7	87 Fr франций	88 Ra радий	89 Ас актиний	104 Rf резерфордий	105 Db нильсборий	106 Sg сиборгий	107 Вh 6орий	108 Нз хассий	109 Мt мейтнерий	110 Ds дармштадий	111 Rg ренттений	112 Сп коперниций	113 Uut унунтрий	114 Uuq унунквадий	115 Uup унунпентий	116 Uuh унунгексий	117 Uus унунсептий	118 Uuo унуноктий			
						58	59	60	61	62	63	64	65	66	67	68	69	70	71				
					L	церий	празеодим	неодим	прометий	самарий	европий	Gd гадолиний	тербий	Диспрозий	Но гольмий	Ег эрбий	ттт	Үb иттербий	лютеций				
					А	50 Th	Pa	92 U	93 Np	94 Pu	Am ⁹⁵	296 Cm	97 Bk	98	Es 99	100 Fm	Md ¹⁰¹	102 No	103 Lr				
						торий	протактиний	уран	нептуний	плутоний	америций	кюрий	берклий	калифорний	эйнштейний	фермий	менделеевий	нобелий	лоуренсий				
										Н	азад	Далее											

Рисунок 12 – Вид страницы выбора химических элементов с выделенными элементами

В открывшейся вкладке «Формирование списка веществ» отобразится список веществ, состоящих из выбранных элементов, по которым есть информация в базе данных (рисунок 13).

🛃 Химическа	я тер	моди	нами	ка 2.0					
Q.,	Зад	ача:	Pad	чет равно	ов есия Рас	четный вариант: *** н	овый вариант *** Расчет		
O. P.	1	Исхо	дны	е данные	Результат	гы расчетов			
	Спи			Выбор	элементо	ов <u>Форм</u>	ирование списка веществ	Количественный и фазовый состав	Настройки расчетной стратегии
	COK	\mathbf{i}		Форм	мула	Название		Источник	^ <u>^ (</u>
	Bar	Y _A a	Ŧ	Источник :]	Ihsan Barin	"Thermochemical Data o	Pure Substances" - 33 Items		8
	риан	1 Per	ſ	Zn		Цинк	Ihsan Barin "Thermochemical Data of	Pure Substances"	нес
	TOB	H		ZnO		Цинка оксид	Ihsan Barin "Thermochemical Data of	Pure Substances"	Bei
The		Ľ		Zn3O(SO4)2			Ihsan Barin "Thermochemical Data of	Pure Substances"	Ę.
	axo			ZnS			Ihsan Barin "Thermochemical Data of	Pure Substances"	Doar
	ани			ZnSO4			Ihsan Barin "Thermochemical Data of	Pure Substances"	ŭ l
	F			ZnSO4*H2O			Ihsan Barin "Thermochemical Data of	Pure Substances"	
4				ZnSO4*2H2C)		Ihsan Barin "Thermochemical Data of	Pure Substances"	
				ZnSO4*6H2C)		Ihsan Barin "Thermochemical Data of	Pure Substances"	
				ZnSO4*7H2C)		Ihsan Barin "Thermochemical Data of	Pure Substances"	
				H2O		Вода	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				H2O2		Водорода пероксид, пере	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				0		Кислород атомарный	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				O2		Кислород	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				O3		Озон	Ihsan Barin "Thermochemical Data of	Pure Substances"	E
				H2SO4		Серная кислота	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				OH		Гидроксил	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				SO		Серы оксид	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				SO2		Серы диоксид	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				SO3		Серы триоксид	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				\$2O		Дисеры оксид	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				HS			Ihsan Barin "Thermochemical Data of	Pure Substances"	
				H2S		Сероводород	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				H2S2			Ihsan Barin "Thermochemical Data of	Pure Substances"	
				S		Сера	Ihsan Barin "Thermochemical Data of	Oure Substances"	
				S2		Дисера	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				S3		Трисера	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				S4		Тетрасера	Ihsan Barin "Thermochemical Data of	Oure Substances"	
				S5		Пентасера	Ihsan Barin "Thermochemical Data of	Oure Substances"	
				S6		Гексасера	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				S7		Гептасера	Ihsan Barin "Thermochemical Data of	Pure Substances"	
				S8		Октасера	Ihsan Barin "Thermochemical Data of	Pure Substances"	*
							Назад	Далее	

Рисунок 13 – Вид страницы формирования списка веществ

Пользователю необходимо отредактировать список веществ в соответствии с постановкой задачи. Для этого нужно выделить вещества², не входящие в рассматриваемую систему и нажать Delete (рисунок 14).

² Выделение нескольких веществ осуществляется при зажатой клавише Ctrl

🛃 Химическа	я тер	модинам	ика 2.0						the second s		X	
Ö.	Зад	ача: Ра	счет равнов	е сия Расчетный вариа	ант: ***/	новь	ый вариант *** Рас	ет				
- QP	1	Исходнь	ые данные	Результаты расчетов								
	Спи		Выбор з	элементов	Фор	мир	ование списка веш	еств Количеств	енный и фазовый состав Настройки расчетной	стратег	ии	
	COK		Источни ^	Формула			Формула	Название	Источник	^	<u>^</u> 🔇	1
	Bap	Уда				•	Источник : Ihsan Barin	Thermochemical Data o	f Pure Substances" - 33 Items		1BO	
	нан	nëH					Zn	Цинк	Ihsan Barin "Thermochemical Data of Pure Substances"		ще	
	TOB	ные					ZnO	Цинка оксид	Ihsan Barin "Thermochemical Data of Pure Substances"		Be	
T-A	0						Zn3O(SO4)2		Ihsan Barin "Thermochemical Data of Pure Substances"		1 IN	
	oxpa						ZnS		Ihsan Barin "Thermochemical Data of Pure Substances"		oốai	
	ВНИ						ZnSO4		Ihsan Barin "Thermochemical Data of Pure Substances"		đ	
	σ						ZnSO4*H2O		Ihsan Barin "Thermochemical Data of Pure Substances"			
4							ZnSO4*2H2O		Ihsan Barin "Thermochemical Data of Pure Substances"			
							ZnSO4*6H2O		Ihsan Barin "Thermochemical Data of Pure Substances"			
							ZnSO4*7H2O		Ihsan Barin "Thermochemical Data of Pure Substances"			
							H2O	Вода	Ihsan Barin "Thermochemical Data of Pure Substances"			
							H2O2	Водорода пероксид, пере	Ihsan Barin "Thermochemical Data of Pure Substances"			
							0	Кислород атомарный	Ihsan Barin "Thermochemical Data of Pure Substances"			
							02	Кислород	Ihsan Barin "Thermochemical Data of Pure Substances"			
							O3	Озон	Ihsan Barin "Thermochemical Data of Pure Substances"		E	
						Н2SO4 Серная кислота Ihsan Barin "Thermochemical Data of Pure Substance:		Ihsan Barin "Thermochemical Data of Pure Substances"				
					<-		ОН	Гидроксил	Ihsan Barin "Thermochemical Data of Pure Substances"			
							SO	Серы оксид	Ihsan Barin "Thermochemical Data of Pure Substances"			
							SO2	Серы диоксид	Ihsan Barin "Thermochemical Data of Pure Substances"			
							SO3	Серы триоксид	Ihsan Barin "Thermochemical Data of Pure Substances"			
							\$2O	Дисеры оксид	Ihsan Barin "Thermochemical Data of Pure Substances"			
							HS		Ihsan Barin "Thermochemical Data of Pure Substances"			
							H2S	Сероводород	Ihsan Barin "Thermochemical Data of Pure Substances"			
							H2S2		Ihsan Barin "Thermochemical Data of Pure Substances"			
							S	Cepa	Ihsan Barin "Thermochemical Data of Pure Substances"			
							S2	Дисера	Ihsan Barin "Thermochemical Data of Pure Substances"			
							S3	Трисера	Ihsan Barin "Thermochemical Data of Pure Substances"			
							S4	Тетрасера	Ihsan Barin "Thermochemical Data of Pure Substances"			
							S5	Пентасера	Ihsan Barin "Thermochemical Data of Pure Substances"			
							S6	Гексасера	Ihsan Barin "Thermochemical Data of Pure Substances"			
							S7	Гептасера	Ihsan Barin "Thermochemical Data of Pure Substances"			
							S8	Октасера	Ihsan Barin "Thermochemical Data of Pure Substances"		-	
							ł	Іазад Далее				

Рисунок 14 – Вид страницы формирования списка веществ с раскрытым списком удаленных веществ

Удаленные вещества можно вернуть в список. Для этого следует открыть вкладку «Удаленные», выделить необходимые вещества и нажать на стрелку вправо. Также, при открытой вкладке «Удаленные», можно удалять выделенные в основном списке вещества путем нажатия стрелки влево (рисунок 15).

🔀 Химическа	я тери	иодина	мика 2.0								x
Q.,	Зад	ача: Р	асчет равнове	е сия Расчетный вариа	ант: *** <i>1</i>	1066	ый вариант *** Рас	чет			
Q.	1	1сходн	ые данные	Результаты расчетов							
	Спи		Выбор эл	лементов	Фор	ми	ование списка вец	цеств Количеств	енный и фазовый состав Настройки расчетной страте	егии	
	COK	 Image: Construction 	Источни ^	Формула]		Формула	Название	Источник	^	<
	Bap	Уда	Источник : Ihs	an Barin "Thermochemi		•	Источник : Ihsan Barin	"Thermochemical Data o	of Pure Substances" - 14 Items		TBO
	иан	лён	Ihsan Barin "Th	Zn3O(SO4)2			Zn	Цинк	Ihsan Barin "Thermochemical Data of Pure Substances"		Ще
	TOB	ные	Ihsan Barin "Th	ZnSO4*H2O			ZnO	Цинка оксид	Ihsan Barin "Thermochemical Data of Pure Substances"		Be
	0		Ihsan Barin "Th	ZnSO4*2H2O			ZnS		Ihsan Barin "Thermochemical Data of Pure Substances"		ВИТ
	axo		Ihsan Barin "Th	ZnSO4*6H2O			ZnSO4		Ihsan Barin "Thermochemical Data of Pure Substances"		oɓa
	гине		Ihsan Barin "Th	ZnSO4*7H2O			H2O	Вода	Ihsan Barin "Thermochemical Data of Pure Substances"		đ
	œ		Ihsan Barin "Th	H2O2			O2	Кислород	Ihsan Barin "Thermochemical Data of Pure Substances"		
			Ihsan Barin "Th	0			H2SO4	Серная кислота	Ihsan Barin "Thermochemical Data of Pure Substances"		
\bigcirc			Ihsan Barin "Th	O3			SO2	Серы диоксид	Ihsan Barin "Thermochemical Data of Pure Substances"		
			Ihsan Barin "Th	ОН			SO3	Серы триоксид	Ihsan Barin "Thermochemical Data of Pure Substances"		
			Ihsan Barin "Th	SO			H2S	Сероводород	Ihsan Barin "Thermochemical Data of Pure Substances"		
			Ihsan Barin "Th	S2O			S	Cepa	Ihsan Barin "Thermochemical Data of Pure Substances"		
			Ihsan Barin "Th	HS			S2	Дисера	Ihsan Barin "Thermochemical Data of Pure Substances"		
			Ihsan Barin "Th	H2S2			S8	Октасера	Ihsan Barin "Thermochemical Data of Pure Substances"		
			Ihsan Barin "Th	S3		<u> </u>	H2	Водород	Ihsan Barin "Thermochemical Data of Pure Substances"		
			Ihsan Barin "Th	S4	-> <-						
			Ihsan Barin "Th	S5							
			Ihsan Barin "Th	S6							
			Ihsan Barin "Th	S7							
			Ihsan Barin "Th	н							
								Назал Лалее			
								Далос			

Рисунок 15 – Редактирование списка веществ

После редактирования списка веществ необходимо нажать кнопку «Далее» для перехода на следующую вкладку (рисунок 16).

🥖 Химическа	я терм	иодинамика 2.0				The Property lies and	
10	Зада	ача: Расчет ра вн	весия Расчетный вариант: *	** новый вариант *** Расчет			
20	V	Ісходные данные	Результаты расчетов				
	2	Выбо	элементов 0	Оормирование списка веществ	количественный и ф	разовый состав Настроі	іки расчетной стратегии
	исок варианто	🗷 Вариация по т	т min (K) T max (K) 300 2000	Шаг (К) 10 Вариация по давлени	ю: Р (атм) Вариация по соста	ву 1	ть
	в Сохранить						
6							
	-						
				Наза	Далее		

Рисунок 16 – Вид страницы задания количественного и фазового состава

6.4 Постановка задачи

Вкладка «Количественный и фазовый состав» предназначена для задания исходных данных для расчета (рисунок 17). Пользователь выбирает одну из трех постановок задач:

- 1. с вариацией по температуре для определенного диапазона температур с заданным шагом, при постоянном давлении;
- 2. с вариацией по давлению для определенного диапазона давлений с заданным шагом по давлению, при постоянной температуре;
- 3. с вариацией по составу для определенного диапазона количества вещества компонентов системы, при постоянных давлении и температуре.

🥖 Химическа	я терм	иодинамика 2	2.0										-			- 0 ×
0.	Зада	ача: <i>Расче</i>	т равнове	сия Расчетн	ый вариа	нт: **	* новыі	й вариант	*** Расчет							
QQ.	N N	Ісходные д	анные І	Результаты ра	счетов											
	Cn		Выбор эл	лементов		Φα	ормир	ование сп	иска веществ	<u>Кол</u>	ичествен	ный и фа	зовый состав	Настройки	расчетной с	тратегии
	1COK			T mi	n (K) T ma	ах (К) Ц	Uar (K)		P (a		(атм)		Количество точек			
	свари	 Вариац	ия по темг	ературе: 3	0 20	00	10	🔲 Вариаци	ия по давлению:	1	Вариация	по составу	1	Применить		
~	анто	формула	фаза	группа фазы	количес	тво ү	источ	ник диапа	зон							
	B	Zn	GAS	GAS	0	1	Ihsan B	Barin 300.00	K							2000.00 K
	0	Zn	LIQ	LIQ	0	1	Ihsan B	Barin		692.00	К		1179.00 K			
	xpa	Zn	SOL	SOL	0	1	Ihsan B	Barin 300.00) K	692.65	К					
	НИТ	ZnO	SOL	SOL	1	1	Ihsan B	Barin 300.00	K							2000.00 K
	<u> </u>	ZnS	GAS	GAS	0	1	Ihsan B	Barin 300.00) K							2000.00 K
- A		ZnS	LIQ	LIQ	0	1	Ihsan B	Barin								2000.00 K
		ZnS	SOL-B-Pse	SOL-B-Pseudo	0	1	Ihsan B	Barin 300.00) K							1995.00 K
		ZnS	SOL-Spha	SOL-Sphalerit	0	1	Ihsan B	Barin 300.00) K				1293.00 K			
		ZnSO4	SOL-1	SOL-1	0	1	Ihsan B	Barin				1015.00 K	[1500.00 K		
		ZnSO4	SOL-2	SOL-2	0	1	Ihsan B	Barin 300.00) K			1015.00 K	<u> </u>			
		H2O	GAS	GAS	0	1	Ihsan B	Barin 300.00) K							2000.00 K
		H2O	LIQ	ЦQ	0	1	Ihsan B	Barin 300.(3	73.15 K							
		02	GAS	GAS	0	1	Ihsan E	Barin 300.00) K			-				2000.00 K
		H2SO4	GAS	GAS	0	1	Ihsan B	Barin 300.00) K			1000.00 K				
		H2SO4	LIQ	LIQ	0	1	Ihsan E	Barin 300.00) К <mark>610.</mark>	00 K						
		SO2	GAS	GAS	0	1	Ihsan I	Barin 300.00) K							2000.00 K
		SO3	GAS	GAS	0	1	Ihsan I	Barin 300.00	к							2000.00 K
		H2S	GAS	GAS	1	1	Ihsan I	Barin 300.00) K							2000.00 K
		S	GAS	GAS	0	1	Insan t	Barin 300.00			002.12	IZ.				2000.00 K
		<u>с</u>			0	1	Insan t	Darin 200 20	000.00 K		002.12	ĸ				
		5	SOL-A	SOL-A	0	1	Insan t	Barin 500.66	08.30 K							
		5	SOL-B	SOL-B	0	1	Insan t	Barin 200.00	000.30 K							2000.00 K
		52	GAS	GAS	0	1	Insan I	Barin 300.00) K							2000.00 K
		H2	GAS	GAS	0	1	Insan I	Barin 300.00) K							2000.00 K
		112	GAS	0/13	U	1	Insant	bann 500.00	/ K							2000.00 K
									Назад	Да	алее					

Рисунок 17 – Вид страницы задания исходных данных

При выборе варианта «Вариация по температуре» пользователю необходимо указать минимальную и максимальную температуры, задать шаг по температуре и нажать кнопку «Применить». В сформированном списке отобразятся вещества, выбранные на предыдущем этапе. Для каждого вещества выводится информация о наличии данных о термодинамических свойствах для разных агрегатных состояний в рассматриваемом диапазоне температур. В данном списке пользователю необходимо задать соотношение компонентов в системе, указав значения в столбце «количество» (рисунок 18).

🛃 Химическ	вя терм	одинамика 2	2.0	-										100			
Ö.	Зада	ача: <i>Расчег</i>	т равнове	е сия Расчетн	ый ва	риант: 2	ZnO	0+H2S 🍕	расчет								
QQ.	И	Ісходные д	анные	Результаты ра	счетов	3											
	Спи		Выбор э.	лементов		(Þop	омирова	ние списка вец	цеств	<u>Кол</u>	ичествен	ный и фа:	вовый состав	Настройки	і расчетной стр	атегии
	сок ваг	🗷 Вариац	ия по темг	тературе: Т mi 30	n (K) T 00	max (K) 2000	Ша	ar (K) 10 E	ариация по дав.	лению:	Р (атм) 1	Вариация	по составу	Количество точек 1	Применить		
	риант	формула	фаза	группа фазы	коли	чество	γ	источник	диапазон								
	B	Zn	GAS	GAS	0		1 1	Ihsan Barin	300.00 K								2000.00 K
	0	Zn	LIQ	LIQ	0		1 1	Ihsan Barin			692.00	К		1179.00 K	_		
	XDa	Zn	SOL	SOL	0		1 1	Ihsan Barin	300.00 K		692.65	К		4		удалить	
	ТИН	ZnO	SOL	SOL	1		1 1	Ihsan Barin	300.00 K							копировать	К
	<u> </u>	ZnS	LIQ	LIQ	0		1 1	Ihsan Barin								экстраполяция	К
Y		ZnS	SOL-B-Pse	SOL-B-Pseudo	0		1 1	Ihsan Barin	300.00 K							посмотреть в 5/1	ĸ
		ZnS	SOL-Spha	SOL-Sphalerit	0		1 1	Ihsan Barin	300.00 K					1293.00 K		Посмотрето в од	
		ZnSO4	SOL-1	SOL-1	0	:	1 1	Ihsan Barin					1015.00 K		1500.00 K		
		ZnSO4	SOL-2	SOL-2	0		1 1	Ihsan Barin	300.00 K				1015.00 K				
\sim		H2O	GAS	GAS	0		1 1	Ihsan Barin	300.00 K								2000.00 K
		H2O	LIQ	LIQ	0		1 1	Ihsan Barin	300.(373.15 K								
		02	GAS	GAS	0		1]	Ihsan Barin	300.00 K								2000.00 K
_		H2SO4	GAS	GAS	0		1 1	Ihsan Barin	300.00 K				1000.00 K				
		H2SO4	LIQ	LIQ	0		1]	Ihsan Barin	300.00 K	610.	00 K						
		SO2	GAS	GAS	0	:	1 1	Ihsan Barin	300.00 K								2000.00 K
		SO3	GAS	GAS	0		1]	Ihsan Barin	300.00 K								2000.00 K
		H2S	GAS	GAS	1		1 1	Ihsan Barin	300.00 K								2000.00 K
		S	GAS	GAS	0		1 1	Ihsan Barin	300.00 K								2000.00 K
		S	ЦQ	ЦQ	0		1 1	Ihsan Barin	388.36 K			882.12	K				
		S	SOL-A	SOL-A	0		1 1	Ihsan Barin	300. <mark>368.30 K</mark>								
		S	SOL-B	SOL-B	0		1 1	Ihsan Barin	3388.36 K								
		S2	GAS	GAS	0		1 1	Ihsan Barin	300.00 K								2000.00 K
		S8	GAS	GAS	0		11	Ihsan Barin	300.00 K								2000.00 K
		H2	GAS	GAS	0		1 1	Ihsan Barin	300.00 K								2000.00 K
										Назад	Да	алее					

Рисунок 18 – Меню экстраполяции данных

6.5 Экстраполяция данных

Пользователь имеет возможность экстраполировать термодинамические данные веществ на интересующий диапазон. Для этого необходимо вызвать контекстное меню нажатием правой кнопки мыши в строке вещества, для которого предполагается произвести экстраполяцию данных. Выбрать в контекстном меню пункт «экстраполяция» (рисунок 19).

Рисунок 19 – Вид окна экстраполяции данных

В появившемся окне «Аппроксимация» пользователь должен выбрать вид аппроксимирующей функции, с помощью которой будет произведена экстраполяция данных. Выбор функции упрощается анализом отклонения аппроксимирующей кривой от исходных данных.

6.6 Сохранение варианта

После формирования постановки задачи необходимо сохранить расчетный вариант. Для этого следует навести курсор на пункт «Сохранить» на панели слева, задать имя варианта и привести краткое описание задачи, после чего нажать на кнопку «Сохранить» (рисунок 20).

🛃 Химическа	а термодинамика 2.0		
Q.	Задача: Расчет равновесия Расчет	ный вариант: *** новый вариант *** Расчет	
ja Ç	Исходные данные Результаты р	асчетов	
	ОСохранить	+	
	Имя варианта ZnO+H2S		Пастройки расчетной стратегий
	Списание тосторый рариант		() Количество точек Примонит
	р пестовый вариант	Сохранить	1
\sim	a H		
	ОВ		2000.00 K
	2		00 K 1179.00 K
	axo		55 K
	H		2000.00 K
	a.		2000.00 K
			2000.00 K
			1995.00 K
			1293.00 K
			1015.00 K 1500.00 K
			1015.00 K
			2000.00 K
			2000.00 K
			1000.00 K
			2000.00 K
			882.12 K
			2000.00 V
			2000.00 K
			2000.00 K
			Далее

Рисунок 20 – Меню сохранения варианта расчета

6.7 Настройка расчетной стратегии и запуск расчета

После сохранения расчетного варианта необходимо перейти на следующую вкладку нажав кнопку «Далее». На вкладке «Настройка расчетной стратегии» пользователю доступны параметры расчетной стратегии (рисунок 21).

🛃 Химичес	кая те	рмодинамика 2.0	- 🗆 ×								
Ö.	Зада	ча: Расчет равновесия Расчетный вариант: ZnO+H2S Расчет									
20	Ио	юдные данные Результаты расчетов									
	Список вариа	Выбор элементов Формирование списка вещесКоличественный и фазовый сНастройки Расчетная стратегия: LogMDM ▽ Параметры расчетной стратегии									
	анто	Условие выхода - размер симплекса	0.005								
	B Co	Условие выхода на этапе простого МДМ - максимальная производная осреднённая по отрезку центр-вершина	1e-09								
	охрани	Условие выхода на этапе логарифмических координат - максимальная производная осреднённая по отрезку центр-вершина	0.0001								
	ТЬ	Размер начального симплекса	1								
\bigcirc		Коэффициент отражения	1								
		Коэффициент растяжения	1.5								
		Коэффициент сжатия	0.4								
		Максимальное число итераций	10000								
		Коэффициент ускорения вдоль направления поиска рекомендуется значение больше 1	1.01								
		Коэффициент ускорения поперёк направления поиска рекомендуется значение в диапазоне (0; 1]	0.99								
		размер буфера истории поиска	20								
		Назад Далее									

Рисунок 21 – Вид страницы настройки расчетной стратегии. Параметры расчетной стратегии «LogMDM»

Параметры расчетной стратегии, установленные по умолчанию, позволяют получать корректные результаты для большинства задач. При необходимости пользователь может их корректировать. После настройки параметров расчетной стратегии следует нажать на кнопку «Расчет» на верхней панели. При необходимости внесения изменений в постановку задачи пользователь может вернуться на вкладку «Количественный и фазовый состав» нажатием кнопки «Назад».

6.8 Результаты расчета

После проведения расчета автоматически открывается вкладка «Результаты расчетов». Результаты расчета представляются в виде графиков или таблицы на соответствующих вкладках. На вкладке «Графики» пользователь может построить график выбрав из раскрывающихся списков интересующие его данные (рисунок 22). По умолчанию строится график зависимости количества вещества от температуры. На вкладке «Таблица» результаты расчета представлены в виде таблицы (рисунок 23). Результаты расчета можно экспортировать в MS Excel. Для этого следует нажать на кнопку «Экспорт в MS Excel».

Рисунок 22 – Вид страницы «Результаты расчетов». Работа с графиками

Ö.	Зада	ача: Расчет равн	<i>овесия</i> Расчетнь	ій вариант: <i>Zn</i> O+H	25 Расчет					
20	V	1сходные данные	Результаты рас	счетов						
	Pe	Графики Т	Габлица							. ×
	зультаты ра	Экспорт Экспорт в Ms Ex	ccel							
	счето	Температура, К	Полная энергия Гиббса, кДж	Удельная энергия Гиббса, кДж/моль	H2S GAS, моль	S GAS, моль	S SOL-А, моль	ZnS SOL-B-Pseudowollastonite, моль	ZnS SOL-Sphalerite, моль	H2O GAS, N
	•	300	-5.293e+05	-2.646e+05	1.812e-14	1.198e-13	5.547e-18	1.106e-12	1	5.53e-18 👛
		310	-5.307e+05	-2.654e+05	9.864e-15	2.548e-15	8.697e-15	3.308e-14	1	2.408e-13
		320	-5.322e+05	-2.661e+05	2.533e-11	1.727e-10	1.363e-09	5.027e-18	1	7.469e-08
		330	-5.336e+05	-2.668e+05	1.555e-16	3.225e-16	3.395e-15	1.26e-14	1	1.847e-14 📱
		340	-5.351e+05	-2.675e+05	4.834e-18	2.081e-17	2.148e-07	4.966e-18	1	3.787e-10
		350	-5.365e+05	-2.682e+05	1.484e-06	7.671e-08	1.003e-06	1.523e-05	1	6.932e-06
		360	-5.379e+05	-2.69e+05	7.917e-08	2.392e-07	7.78e-07	7.376e-07	1	4.683e-05
		368.3	-5.386e+05	-2.691e+05	0.0004012	2.427e-05	0.0003186	0.001197	0.9967	0.1011
\frown		368.3	-5.386e+05	-2.691e+05	0.0004012	2.427e-05		0.001197	0.9967	0.1011
		370	-5.393e+05	-2.696e+05	0.0003199	2.913e-05		8.366e-17	0.9994	0.1155
		373.1	-5.4e+05	-2.7e+05	1.012e-15	1.582e-16		3.118e-12	1	1
		373.1	-5.4e+05	-2.7e+05	5.324e-11	1.2e-12		2.082e-14	1	1
		380	-5.417e+05	-2.709e+05	1.596e-11	1.75e-13		5.428e-10	1	1
		388.4	-5.439e+05	-2.72e+05	5.239e-14	5.771e-18		4.091e-13	1	1
		388.4	-5.439e+05	-2.72e+05	5.871e-18	6.255e-13		5.538e-18	1	1
		390	-5.443e+05	-2.722e+05	9.023e-11	4.465e-15		5.123e-15	1	1
		400	-5.469e+05	-2.735e+05	4.638e-18	8.048e-15		3.244e-06	1	1
		410	-5.497e+05	-2.749e+05	1.486e-17	5.847e-11		9.026e-10	1	1
		420	-5.525e+05	-2.763e+05	4.751e-10	8.948e-16		1.308e-12	1	1
		430	-5.553e+05	-2.777e+05	7.904e-10	4.609e-14		5.749e-18	1	1
		440	-5.581e+05	-2.791e+05	5.693e-18	2.132e-10		1.532e-10	1	1
		450	-5.609e+05	-2.805e+05	9.475e-09	2.425e-10		5.368e-09	1	1
		460	-5.637e+05	-2.819e+05	3.882e-09	1.053e-11		8.845e-11	1	1
		470	-5.665e+05	-2.833e+05	1.092e-08	1.559e-10		3.966e-14	1	1
		480	-5.693e+05	-2.847e+05	7.161e-09	3.914e-14		3.569e-11	1	1
		490	-5.721e+05	-2.861e+05	1.06e-08	2.068e-16		1.069e-11	1	1
		500	-5.749e+05	-2.875e+05	6.751e-17	4.55e-13		5.544e-18	1	1
		510	-5.779e+05	-2.889e+05	4.895e-12	5.228e-18		1.815e-10	1	1
		520	-5.809e+05	-2.904e+05	2.828e-08	6.49e-11		1.052e-09	1	1
		530	-5.838e+05	-2.919e+05	1.047e-17	3.228e-09		3.148e-14	1	1
		540	-5.868e+05	-2.934e+05	5.777e-08	2.297e-11		5.338e-18	1	1
		550	-5.898e+05	-2.949e+05	5.097e-18	2.39e-10		4.715e-11	1	1
		560	-5.927e+05	-2.964e+05	4.957e-18	5.638e-18	l	2.243e-15	1	1 *
										P

Рисунок 23 – Вид страницы «Результаты расчетов». Работа с таблицами

7 Оценка свойств

7.1 Назначение модуля

Модуль «Оценка свойств» предназначен для оценки значений термодинамических функций (энтальпии образования, энтропии и изобарной теплоемкости) химических соединений по их структуре. Модуль использует математическую модель, обобщающую информацию из базы данных по термодинамическим свойствам индивидуальных веществ. Математическая модель использует принципы QSPR (Quantitative Structure-Property Relationship) для оценки свойств различных соединений по данным об их структуре и агрегатном состоянии. В основе метода лежит предположение об аддитивности свойств фрагментов, из которых состоит химическое соединение. Значения характеристик фрагментов, используемые для оценок, получены путём построения множественной линейной регрессии на основе значений справочных данных по энтальпии, энтропии и теплоёмкости индивидуальных веществ. Подробное описание математической модели, способа пакетной обработки данных из базы для формирования исходной выборки, способа получения набора признаков и способа расчета параметров модели и их численные значения приведены в статье [5].

Модуль имеет пользовательский интерфейс с инструментами построения, сохранения, загрузки и редактирования молекулярных графов (рисунок 24).

Рисунок 24 – Вид окна модуля «Оценка свойств»

7.2 Постановка задачи

Для построения и редактирования молекулярных графов в пользовательском интерфейсе реализованы следующие инструменты (рисунок 24):

0 - добавление, по нажатию левой кнопки мыши, нового узла (элемента), выбранного из выпадающего списка;

– добавление, по нажатию левой кнопки мыши, новой связи на узле;

📃 – выделение узла без сброса предыдущего выделения;

11 – изменение кратности связи, по нажатию левой кнопки мыши на связь;

– упорядочение графа;

– добавление водорода ко всем незанятым валентностям;

– удаление выделенных элементов графа;

а также выпадающий список для выбора фазового состояния.

7.3 Результаты расчета

Алгоритм, реализованный в рамках модуля, автоматически разбивает построенный граф на фрагменты, составляет на основе полученного разбиения список фрагментарных дескрипторов и рассчитывает оценочные значения энтальпии, энтропии и теплоёмкости химического соединения.

8 Расчет реакций

8.1 Назначение модуля

Модуль «Расчет реакций» предназначен для расчета изменения термодинамических функций по отдельным реакциям (при заданной температуре или диапазоне ее изменения). Расчет термодинамических функций производится согласно закону Гесса.

8.2 Постановка задачи

При постановке задачи пользовательский интерфейс предполагает запись уравнения реакции в виде текстовой строки. При вводе формул программа ищет соответствия в базе данных и предлагает пользователю варианты окончания вводимой формулы, а также предлагает пользователю автоматически расставить коэффициенты (рисунок 25). Затем задается диапазон температур, в котором требуется рассчитать термодинамические функции реакции. Для веществ, информация о которых есть в базе данных, но не покрывает всего заданного пользователем температурного диапазона, предлагается возможность экстраполяции данных в этот диапазон.

🛃 TeDy 2.0							-		×
Ö.	Зада	ча: Расчет	реакц	ий Расчетный вариант: Methane Расчет					
00	и	сходные да	ные	Результаты расчета					
57.	Списс	T min (K) T 500 20	max (K 000) Шаг 100					
	DK Ba	CH4 [6] + 1.5	O2 [6]	= 2 H2O [6] + CO [6]					$^{\circ}$
	риан	Формула	Фаза	Источник	Диапазон				
	H	CH4	GAS	Ihsan Barin "Thermochemical Data of Pure Substances"	298.15 K	2000.00 K			
		02	GAS	Ihsan Barin "Thermochemical Data of Pure Substances"	298.15 K		5	000.00 k	<
	6	H2O	GAS	Ihsan Barin "Thermochemical Data of Pure Substances"	298.15 K		5	000.00 k	<
	í a	H2O	LIQ	Ihsan Barin "Thermochemical Data of Pure Substances"	2373.15 K				
	Н	CO	GAS	Ihsan Barin "Thermochemical Data of Pure Substances"	298.15 K	3000.00 K			
								ОК	
()									~

Рисунок 25 – Вид окна модуля «Расчет реакций»

8.3 Результаты расчета

Результаты расчета представляются в виде графиков зависимостей энтальпии, энтропии и энергии Гиббса от температуры (рисунок 26).

Рисунок 26 – Вид страницы графического отображения результатов расчета изменения термодинамических функций по реакции

Также результаты расчета представляются в виде таблицы. Для графиков реализована функция сохранения в графический файл, а для таблицы – в Microsoft Excel.

Список использованных источников

- 1. Пешкичев И.В., Макеева И.Р., Шульц О.В. [и др.] // Программный комплекс TeDy для решения задач термодинамического моделирования. Вестник ЮУрГУ ММП, 2018. Т.11, №1. С. 84-94. DOI: 10.14529/mmp180108
- Barin I. // Thermochemical Data of Pure Substances. Third Edition, VCH Publishers, Inc., New York, NY (USA). DOI:10.1002/9783527619825
- 3. Глушко В.П., Гурвич Л.В., Бергман Г.А. [и др.] // Термодинамические свойства индивидуальных веществ. Справочное издание в четырех томах. М.: Наука, 1982.
- 4. Пешкичев И.В., Бочкарева А.А., Куропатенко В.Ф. [и др.] // Термодинамический анализ карботермического синтеза (U, Pu)N // Радиохимия, 2019, т.61, №5, с. 381–385. DOI: 10.1134/S0033831119050046
- 5. Шульц О.В. Оценка термодинамических свойств химических соединений на основе количественных соотношений структура–свойство // Журнал физической химии, 2019, т.93, №7, с. 963–970. DOI: 10.1134/S0044453719070264